Numerical Schemes for Time Integrations -- Solving Initial Value Problems

Explicit Scheme:

- The future information are determined based on the present and the past information
- Easy to program, easy to blowout!
- To avoid blowout, one have to choose shorter time step.
- A short time step means more CPU time

Implicit Scheme:

- The future information are determined based on the future, the present, and the past information
- Difficult to program and/or require more memory
- Stable in large time step.
- Implicit scheme can save more CPU time and provide reliable results

Predictor-Corrector Method Based on Adams Formula

Predictor-Corrector method is an easy-to-program implicit scheme, but require more memory than the corresponding explicit scheme. We use the Adams' formula to construct the Predictor-Corrector simulation scheme

The 4th order Predictor-Corrector method recommended by Shampine and Gordon, (1975) is summarized below.

Ling-Hsiao Lyu

Procedure of the 4th order Predictor-Corrector Method

Initial	Solving $dy/dt = f$ or $\partial y/\partial t = f$ with $h = \Delta t$ to obtain y^1 , y^2 , and y^3
	from y^0 by the 4 th order Runge-Kutta method
Predicting	Predicting y^{n+1} from y^n , y^{n-1} , y^{n-2} , and y^{n-3} by the 4 th order Adams
Step	Open Formula:
	$y^{n+1} = y^n + h\left[\frac{55}{24}f^n - \frac{59}{24}f^{n-1} + \frac{37}{24}f^{n-2} - \frac{9}{24}f^{n-3}\right] + O(h^5 f^{(4)})$
Correcting	Correcting y^{n+1} from y^{n-2} , y^{n-1} , y^n , and the last y^{n+1} by the 4^{th} order
Steps	Adams Close Formula:
	$y^{n+1} = y^n + h\left[\frac{9}{24}f^{n+1} + \frac{19}{24}f^n - \frac{5}{24}f^{n-1} + \frac{1}{24}f^{n-2}\right] + O(h^5 f^{(4)})$
	Repeat the Correcting step until the iteration converges.
•••	Repeat the <i>Predicting</i> and <i>Correcting Steps</i> to advance y from y^n to y^{n+1} .

The 4th order Runge-Kutta method (an explicit scheme)

Solving
$$dy/dt = f$$
 or $\partial y/\partial t = f$ with $h = \Delta t$

$$(y^*)^{n+\frac{1}{2}} = y^n + \frac{h}{2}f(t^n, y^n)$$

$$(y^{**})^{n+\frac{1}{2}} = y^n + \frac{h}{2}f(t^{n+\frac{1}{2}}, (y^*)^{n+\frac{1}{2}})$$

$$(y^{***})^{n+1} = y^n + hf(t^{n+\frac{1}{2}}, (y^{**})^{n+\frac{1}{2}})$$

$$y^{n+1} = y^n + h\left[\frac{1}{6}f(t^n, y^n) + \frac{2}{6}f(t^{n+\frac{1}{2}}, (y^*)^{n+\frac{1}{2}})\right]$$

$$+ \frac{2}{6}f(t^{n+\frac{1}{2}}, (y^{**})^{n+\frac{1}{2}}) + \frac{1}{6}f(t^{n+1}, (y^{***})^{n+1})\right] + O(h^5 f^{(4)})$$

References

- Hildebrand, F. B., *Advanced Calculus for Applications, 2nd edition,* Prentice-Hall, Inc., Englewood, Cliffs, New Jersey, 1976.
- Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, *Numerical Recipes (in C or in FORTRAN and Pascal), Cambridge* University Press, Cambridge, 1988.
- Shampine, L. F., and M. K. Gordon, *Computer Solution of Ordinary Differential Equation:* the Initial Value Problem, W. H. Freeman and Company, San Francisco, 1975.