Numerical Schemes for Time Integrations -- Solving Initial Value Problems
Explicit Scheme:
e The future information are determined based on the present and the past
information
e Easy to program, easy to blowout!
e To avoid blowout, one have to choose shorter time step.
e A short time step means more CPU time
Implicit Scheme:
e The future information are determined based on the future, the present, and
the past information
e Difficult to program and/or require more memory
e Stable in large time step.

e Implicit scheme can save more CPU time and provide reliable results



Predictor-Corrector Method Based on Adams Formula

Predictor-Corrector method i1s an easy-to-program implicit scheme, but require more
memory than the corresponding explicit scheme. We use the Adams' formula to construct
the Predictor-Corrector simulation scheme

The 4™ order Predictor-Corrector method recommended by Shampine and Gordon,

(1975) 1s summarized below.



Procedure of the 4" order Predictor-Corrector Method

Initial Solving dy/dt=f or dy/dt=f with h=Ar toobtain y', y° and y°
from y° by the 4™ order Runge-Kutta method
Predicting | Predicting y"*' from y", y"', y"2,and y" by the 4™ order Adams
Step Open Formula:
Y=yt h[%f” - %f”‘l + ;—zf”‘z - %f””] +O(W )
Correcting | Correcting "™ from y"*, y"', y", and the last by the 4™ order
Steps Adams Close Formula:
Y=y +%f”—%f”‘l+if”‘2]+0(h5f(4))
Repeat the Correcting step until the iteration converges.
Repeat the Predicting and Correcting Steps to advance y from y" to y""
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The 4™ order Runge-Kutta method (an explicit scheme)
Solving dy/dt=f or dy/dt=f with h=At
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